Application Note: 407

Key Words

Access[™]

Antibiotic

Analysis

• SRM

TSQ Quantum

Accela[™] High

Food Residue

Speed LC System

Simple and Rapid Analysis of Chloramphenicol in Milk by LC-MS/MS

Ting Liu¹, Peter Wang¹, and Kefei Wang² ¹Thermo Fisher Scientific, Shanghai, China; ²Thermo Fisher Scientific, San Jose, CA, USA

Introduction

Chloramphenicol (CAP) is a broad-spectrum antibiotic with historical veterinary uses in all major food-producing animals (see Figure 1 for structure). It has serious side effects on humans that may cause aplastic anemia, and the suspected carcinogen effect is also thought to be dose independent. Consequently, chloramphenicol has been banned for use in all food-producing animals by the European Union (EU), USA and Canada. A minimum required performance limit (MRPL) for chloramphenicol determination was recently set by the EU at 0.3 µg/kg (ppb) in all foods of animal origin, such as meat, seafood, egg, milk, honey, etc. However, residues of CAP at unacceptable levels continue to be found in food imports, as a result of illegal use in some countries to mask the poor hygiene conditions of animal-raising farm and to augment animal growth. The growing food safety concerns call for intensive surveillance of chloramphenicol in food products.

Figure 1: Structure of chloramphenicol

Analysis of residual of chloramphenicol in foodstuff is challenging because of the complicated sample matrices and stringent requirements of both low quantitation limit (<0.3 ppb) and method validation. The technique of liquid chromatography separation followed by tandem mass spectrometry detection, LC-MS/MS, is the technology of choice because of its sensitivity and specificity. A sample cleanup process is generally required to remove the sample matrix prior to the LC-MS/MS run. Typically, this involves the costly and labor-intensive solid phase extraction (SPE) and/or liquid-liquid extraction (LLE) procedures.

In this work, we report a simple sample preparation procedure involving only the acetonitrile protein precipitation and dilution to extract the CAP from milk, followed by a high-speed LC separation and detection by a triple quadrupole mass spectrometer operated in selected reaction monitoring (SRM) mode. The sample preparation is simple, fast, and inexpensive, and the method exceeds the sensitivity and specificity requirements for both screening and confirmatory assays. Validation according to the European Commission Decision 2002/657/EC has also been performed.

Goal

To develop a simple, rapid, and sensitive LC-MS/MS method for analyzing chloramphenicol in milk. The method should be suitable for both screening and confirmatory purposes.

Experimental Conditions

Sample Preparation

Standards and Regents: Chloramphenicol (98%) was purchased from Sigma-Aldrich (St. Louis, MO) and d5chloramphenicol (100 µg/mL in acetonitrile) as internal standard from Cambridge Iosotope Lab (Andover, MA). Regent grade water, acetonitrile and methanol were from Thermo Fisher Scientific (Pittsburgh, PA).

Procedures:

Chromatography Conditions

HPLC Module: Accela High Speed LC System (Thermo Scientific, San Jose, CA) Column: Hypersil GOLD[™] 50 mm×2.1 mm and 1.9 µm particle size (Thermo Scientific, Bellefonte, PA) Column Temperature: Ambient Mobile Phase: A: Methanol B: Water A% Gradient: Time (min) 0.0-0.6 5% 2.3 100% 2.35-3.0 5%

Flow Rate: 500 µL/min

Injection Volume: 20 µL (with loop)

Mass Spectrometer Conditions

Mass Spectrometer: TSQ Quantum Access triple stage quadrupole mass spectrometer (Thermo Fisher Scientific, San Jose, CA)

Source: ESI-, 3000 V Sheath Gas: 45 unit Auxiliary Gas: 10 unit Capillary Temperature: 300 °C Source CID: -7 V Q1 and Q3 Peak Width (FWHM): 0.7 Da Scan Time: 0.1 s Collision Gas: Ar (1.5 mTorr) SRM Transitions: 3 SRMs for CAP, 1 SRM for d5-CAP (see Table 1)

	Precursor Ion	Product Ion (Collision Energy)
CAP (M -H -)		152 (17)*
	320.93	257 (15)
		194 (16)
d _s -CAP (M -H ⁻)	326.93	157 (17)*

Table 1: SRM transitions for CAP and d5-CAP (IS)

Results and Discussion

Sample Preparation: A major goal for the method development in this study is to avoid using the labor intensive and time-consuming SPE or LLE procedures as in literatures. In curret work, the proteins from milk were removed with acetonitrile precipitation at ratio of 1.5:1 (v/v Acetonitrile:Milk), followed by dilution with water, which is necessary for gradient chromatographic separation. At such ratio, protein removal was not complete, trace amount of precipitates of proteins appeared after the sample was stored at 4°C for some time. Thus, the supernatant was taken for LC-MS/MS analysis after the sample was stored at 4°C for ≥1 hr.

Choice of Quantitation and Qualification Ions: Three product ions were chosen to give an Identification Points (IPs) of 5.5 to meet the requirement of \geq 4.0 IPs by the Decision 2002/657/EC for confirmatory assay of the prohibited substances such as CAP. The *m*/*z* 152 was chosen as quantitation ion, the *m*/*z* 257 and 194 as confirmation ions, consisting with those reported in literatures.

The results of relative ion abundance measured at various concentrations are given Table 2. Both relative ion abundance ratios of 257/152 and 194/152 meet the requirements set by Decision 2002/657/EC.

Note that we found the 321>257 transition is more likely subjected to matrix interferences in many other cases of different matrices, thus if two SRM transitions need to be selected (4.0 IPs) for the method, 321>152 and 321>194 are preferred.

Method Performance: Figure 2 shows representative SRM chromatograms for a blank and 0.05 µg/kg spiked milk samples. As shown, with high-speed LC, each chromatographic run is only 3 min, allowing high throughput for screening assay. All three SRM traces for CAP at 0.05 µg/kg spiked samples can be well quantified. Note that the 0.05 µg/kg spiked in milk is equivalent to 0.46 pg injected on column by assuming a full recovery.

It should also be noted that with the high-speed LC separation of only 3 min for each chromatographic run, the CAP peak width (at 10% above baseline) is as narrow as 6 s. Under current MS acquisition conditions, there are 13-14 points across each peak, enough for maintaining a well-defined peak shape for accurate integration.

A representative calibration curve from standards prepared in milk is shown in Figure 3. Good linearity from 0.05 to 1.0 μ g/kg with correlation coefficient of R²= 0.9954 (Weighting factor W = 1/X) was obtained.

Table 3 shows excellent recovery and within-laboratory reproducibility of the method (at four different days).

Decision Limit (CC α) and Detection Capability (CC β): According to Decision 2002/657/EC, the Decision Limit CC α is the minimum CAP concentration at which a sample is really non-compliant with an error probability of 1% (α =0.01), and the Detection Capability (CC β) is the minimum amount of CAP that can be quantified and confirmed with an error probability of 5% (β =0.05).

Two methods can be used for calculating the CC α according to the Decision. One is to use the S/N ratio of 3:1 of blank samples, similar to those for estimation of limit of detection. The other is to use the intercept of calibration curve at low levels and the within-laboratory reproducibility. The former method does not work well for LC-MS/MS because the very low background (noise count ~0) of SRM chromatogram often yields unrealistically low values for CC α . Thus we use the latter approach by using cali-

CAP Spiked Level Me (µg/kg) n=	Relative	tive Ion Abundance of 257/152		Relative Ion Abundance of 194/152		
	Mean <i>n</i> =6	%RSD <i>n</i> =6	Tolerance by Decision 2002/657/EC	Mean <i>n</i> =6	%RSD <i>n</i> =6	Tolerance by Decision 2002/657/EC
0.05	96%	16%	20%	26%	21%	
0.15	92%	7.6%		28%	25%	25%
0.30	93%	15%		31%	15%	
0.50	90%	3.4%		31%	17%	-

Note: Relative ion abundance values were calculated by relative peak area ratios

bration data of (0.05-0.15-0.30 μ g/kg) to obtain the Y-intercept and its standard deviation, SD_{Y-intercept},

$CC\alpha=Y$ -intercept + 2.33* SD_{Y -intercept

Similarly, the CC β can be calculated from CC α and the standard deviation of 20 measurement of samples spiked at CC α level. Here the latter term is approximated

with the within-laboratory reproducibility data of 0.15 µg/kg spiking level, thus,

$CC\beta = CC\alpha + 1.64*SD_{0.15 \ \mu g/kg}$

Where SD_{0.15 µg/kg} is the within-laboratory reproducibility (in standard deviation) of the 0.15 µg/kg in Table 3. The calculated values of CC α and CC β are 0.087 µg/kg and 0.12 µg/kg, respectively.

CAP Spiking Level (µg/kg)	Within-laboratory Reproducibility (n = 20)				
	Mean (%)	SD (µg/kg)	%RSD		
0.05	97%	0.0065	14%		
0.15	101%	0.020	13%		
0.30	104%	0.037	11%		
0.50	94%	0.042	8.0%		

Table 3: Recovery and Reproducibility Data

Figure 2: SRM chromatograms for milk blank and 0.050 µg/kg spiked milk samples

Figure 3: Calibration of CAP in milk

Conclusions

A simple, rapid and sensitive method for analysis of CAP in milk by LC-MS-MS has been developed and validated. The sample preparation by protein precipitation and dilution is very simple to perform and avoids the use of SPE or LLE. With the high-speed Accela LC coupled to a triple quadruple TSQ Quantum Access, each analytical run is as short as 3 min. The method can be used for the purposes of both high-throughput screening and rapid confirmatory assays.

For screening assay, the method can detect < 0.050 μ g/kg CAP in milk. For confirmatory assay, the method validated according to Decision 2002/657/EC gives a CC α =0.087 μ g/kg and CC β = 0.12 μ g/kg, both below the MRPL of 0.3 μ g/kg.

References

- 1. Commission Decision 2002/657/EC of 12 August 2002 implementing Council Directive 96/23/ECD concerning the performance of analytical methods and the interpretation of results, Official Journal of the European Communities, L 221, 2002, 8-36.
- Bogusz, M.J. et al. "Rapid determination of chloramphenicol and its glucuronide in food products by liquid chromatography–electrospray negative ionization tandem mass spectrometry"; *J, Chrom. B* 2004, 807(2), 343-356.
- Tao, D. et al. "Effects of sample preparation and high resolution SRM on LC-MS-MS determination of chloramphenicol in various food products"; Poster Presentation, 53rd ASMS Conference, San Antonio, TX, USA, June 5-9, 2005.
- Gallo, P. et al. "Development of a liquid chromatography/electrospray tandem mass spectrometry method for confirmation of chloramphenicol residues in milk after alfa-1-acid glycoprotein affinity chromatography"; *Rapid Commun. Mass Spectrom.* 2005, 19(4), 574-579.
- Vinci, F. et al. "In-house validation of liquid chromatography electrospray tandem mass spectrometry method for confirmation of chloramphenicol residues in muscles according to Decision 2002/567/EC"; *Rapid Commun. Mass Spectrom.* 2005, 19(22), 3349-3355.

In addition to these offices, Thermo Fisher Scientific maintains a network of representative organizations throughout the world.

Africa

+43 1 333 5034 127 Australia +61 2 8844 9500 Austria +43 1 333 50340

Belgium +32 2 482 30 30

Canada +1 800 530 8447 China

+86 10 5850 3588 **Denmark** +45 70 23 62 60

Europe-Other +43 1 333 5034 127 France

+33 1 60 92 48 00 Germany +49 6103 408 1014

India +91 22 6742 9434 Italy

+39 02 950 591 Japan +81 45 453 9100

Latin America +1 608 276 5659 Middle East +43 1 333 5034 127

Netherlands +31 76 587 98 88

South Africa +27 11 570 1840 Spain

+34 914 845 965 Sweden/Norway/

Finland +46 8 556 468 00 Switzerland

UK +44 1442 233555 USA +1 800 532 4752

www.thermo.com

9001 REGISSION

Thermo Fisher Scientific, San Jose, CA USA is ISO Certified.

AN62530_E 11/07S

Legal Notices

©2007 Thermo Fisher Scientific Inc. All rights reserved. All trademarks are the property of Thermo Fisher Scientific Inc. and its subsidiaries. This information is presented as an example of the capabilities of Thermo Fisher Scientific Inc. products. It is not intended to encourage use of these products in any manners that might infringe the intellectual property rights of others. Specifications, terms and pricing are subject to change. Not all products are available in all countries. Please consult your local sales representative for details.

View additional Thermo Scientific LC/MS application notes at: www.thermo.com/appnotes